A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
نویسندگان
چکیده
منابع مشابه
Convex Functions on Carnot Groups
We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.
متن کاملIsodiametric Inequality in Carnot Groups
The classical isodiametric inequality in the Euclidean space says that balls maximize the volume among all sets with a given diameter. We consider in this paper the case of Carnot groups. We prove that for any Carnot group equipped with a Haar measure one can find a homogeneous distance for which this fails to hold. We also consider Carnot-Carathéodory distances and prove that this also fails f...
متن کاملChaotic Geodesics in Carnot Groups
Graded nilpotent Lie groups, or Carnot Groups are to subRiemannian geometry as Euclidean spaces are to Riemannian geometry. They are the metric tangent cones for this geometry. Hoping that the analogy between subRiemannian and Riemannian geometry is a strong one, one might conjecture that the subRiemannian geodesic flow on any Carnot group is completely integrable. We prove this conjecture is f...
متن کاملSingularities of quasiregular mappings on Carnot groups
In 1970 Poletskĭı applied the method of the module of a family of curves to describe behavior of quasiregular mappings (in another terminology mappings with bounded distortion) in Rn. In the present paper we generalize a result by Poletskĭı and study a singular set of a quasiregular mapping using the method of the module of a families of curves on Carnot groups.
متن کاملViscosity convex functions on Carnot groups
We prove that any locally bounded from below, upper semicontinuous v-convex function in any Carnot group is h-convex. §
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Geometry in Metric Spaces
سال: 2018
ISSN: 2299-3274
DOI: 10.1515/agms-2017-0007